585 research outputs found

    Invasive meningococcal disease epidemiology and control measures: a framework for evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meningococcal disease can have devastating consequences. As new vaccines emerge, it is necessary to assess their impact on public health. In the absence of long-term real world data, modeling the effects of different vaccination strategies is required. Discrete event simulation provides a flexible platform with which to conduct such evaluations.</p> <p>Methods</p> <p>A discrete event simulation of the epidemiology of invasive meningococcal disease was developed to quantify the potential impact of implementing routine vaccination of adolescents in the United States with a quadrivalent conjugate vaccine protecting against serogroups A, C, Y, and W-135. The impact of vaccination is assessed including both the direct effects on individuals vaccinated and the indirect effects resulting from herd immunity. The simulation integrates a variety of epidemiologic and demographic data, with core information on the incidence of invasive meningococcal disease and outbreak frequency derived from data available through the Centers for Disease Control and Prevention. Simulation of the potential indirect benefits of vaccination resulting from herd immunity draw on data from the United Kingdom, where routine vaccination with a conjugate vaccine has been in place for a number of years. Cases of disease are modeled along with their health consequences, as are the occurrence of disease outbreaks.</p> <p>Results</p> <p>When run without a strategy of routine immunization, the simulation accurately predicts the age-specific incidence of invasive meningococcal disease and the site-specific frequency of outbreaks in the Unite States. 2,807 cases are predicted annually, resulting in over 14,000 potential life years lost due to invasive disease. In base case analyses of routine vaccination, life years lost due to infection are reduced by over 45% (to 7,600) when routinely vaccinating adolescents 12 years of age at 70% coverage. Sensitivity analyses indicate that herd immunity plays an important role when this population is targeted for vaccination. While 1,100 cases are avoided annually when herd immunity effects are included, in the absence of any herd immunity, the number of cases avoided with routine vaccination falls to 380 annually. The duration of vaccine protection also strongly influences results.</p> <p>Conclusion</p> <p>In the absence of appropriate real world data on outcomes associated with large-scale vaccination programs, decisions on optimal immunization strategies can be aided by discrete events simulations such as the one described here. Given the importance of herd immunity on outcomes associated with routine vaccination, published estimates of the economic efficiency of routine vaccination with a quadrivalent conjugate vaccine in the United States may have considerably underestimated the benefits associated with a policy of routine immunization of adolescents.</p

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004

    Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV

    Full text link
    We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
    corecore